

AI-powered digital twins for orthopedics

OSORA

Orthopedics remained unchanged for the last 40 years: an analogous, eminence-based discipline

of patients are affected by complications and require further treatment

71.431€

10%

Average cost of pseudarthrosis of lower extremities

15 years

and hundreds of patients treated are necessary to become a good orthopaedic surgeon

Expensive

Clinical studies for the go-to-market of new implant products

No existing product on the market targets these problems from a holistic patient journey perspective covering diagnosis, treatment and rehabilitation

Our solution: Closing the data loop for AI-based decision support – for better treatment outcomes and fast orthopedic innovation

Patient-at-risk identification

for prevention of healing complications

Faster mobilization

for minimized treatment costs

Training off-the-patient

in VR/AR-environments

Speed up go-to-market

with in silico implant testing

OSORA

We are building the first orthopedic management software that clinicians use to make sure patients are safe on their healing path

Tap every available data source: medical imaging, patient data, etc.

Build what works for surgeon and patient: Harmonizing osteosynthesis and rehab regime

Reduce friction: Structured reporting for admin & patient monitoring

Cloud-based Simulation-as-a-Service: Convenient in clinical practice, ready for future reimbursement

Feature-based pricing factors

Our customers

Medical societies Educational software in a train-thetrainer model

Healthcare Institutions Clinical Decision Support in Fracture Management

Our business model challenges currently available planning tools, which are sold as licenses with additional maintenance contracts

AI-augmented digital twins and bone healing simulation, based on 25 years of research, validated with real-life patient data

Proof-of-Concept study results

Prediction of fracture treatment outcome

Degenhart C, Engelhardt L, Niemeyer F, et al. <u>Computer-Based Mechanobiological Fracture</u> <u>Healing Model Predicts Non-Union of Surgically Treated Diaphyseal Femur Fracture</u>, J. Clin. Med. 2023, *12*(10), 346

Impact of stability on bone healing progress

Steiner M, Claes L, Ignatius A, et al. <u>Numerical Simulation of Callus Healing for Optimization of Fracture Fixation Stiffness</u>. Costa-Rodrigues J, ed. PLoS ONE. 2014;9(7):e101370

AI-assisted identification of patients-at-risk for bone healing complications

Armbruster J et al. Predicting non-unions in tibial shaft fractures: Can digital twins contribute to a reliable prognosis? DKOU 2024

Visuals: <u>https://osora.eu/2024/05/08/five-reasons-why-osora-boosts-mechano-biological-bone-healing-simulation-with-ai/</u>

The market for medical AI is gaining traction, with an estimated market size of 188 billion USD by 2030

TAM: \$11 billion

General medical AI (2021)

SAM: \$251.2 million

AI in Orthopedics (2023)

SOM: \$100 million Simulations by OSORA in 2027

<u>https://www.statista.com/topics/10011/ai-in-healthcare/#topicOverview</u> <u>https://www.marketsandata.com/industry-reports/ai-in-orthopedic-surgery-market</u> <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919810/</u> Every year 660 million patients require treatment of musculoskeletal defects

37 % CAGR factors: increasing geriatric population, number of surgeries & adoption of AI-support

Target markets: Germany, then EU, US, Asia

Indication: Surgical treatment of fractures of the lower extremities

Surgical planning is changing from being a mandatory task to a real workload reduction for surgeons

The OSORA USP: a patient-specific prediction of the healing process in bones based on individualized load bearing scenarios

Our mission is the digitization of the treatment of musculoskeletal defects by using AI-powered simulation technology

Founding team

Dr. rer. nat. Lucas Engelhardt Ph.D. in Modeling & Simulation of Bone Healing Ulm Universitv Image processing & Biomechanics

Dr. biol. hum. Frank Niemeyer Ph.D. in Simulation of Bone Healing Ulm University Software development, ML & AI

Dr. oec. Andreas Arnegger Ph.D. in Business Development University of Hohenheim **Business Development, Managing Director**

chnisch

Clinical partners UNIVERSITÄTS **BG Klinik BG Klinik** KLINIKUM Berufsgenossenschaftliche Berufsgenossenschaftliche Unfallklinik Ludwigshafen Unfallklinik Tübingen **BG Klinikum BGU Murnau** Berufsgenossenschaftliche Duisburg Unfallklinik Murnau Pseudarthrosis & rehabilitation planning General trauma application development partner partner since 1999

Mentors & Advisors

ulm

Prof. Dr. Florian Gebhard Medical director University Hospital Ulm **Clinical application**

Prof. Dr. Lutz Claes Former director Institute for **Biomechanics Ulm** Scientific network

Prof. Dr. Endric Schubert Co-founder & CTO **Missing Link Electronics** Startup acceleration

We aim to raise 2,5 m € pre-seed funding until the end of 2024 for building sales & regulatory and scaling the tech stack

Use of funds – 18 months cash runway

Why now?

Treating patients is getting more complicated due to age and comorbidities

Shortage of healthcare professionals opens window for technology push

Regulatory frameworks open the avenue for AI-based decision support

Our goal: the go-to-platform for orthopedic treatment within the regulatory requirements of clinical safety, efficacy and usability

AI-powered digital twins for orthopedics – We invite you to join our initiative for better, smarter and efficient bone fracture healing!

Contact:

Dr. Andreas Arnegger E-Mail: andreas@osora.eu Tel: +49 152 2181 0900 www.osora.eu

